

ALGEBRAIC CURVES EXERCISE SHEET 7

Unless otherwise specified, k is an algebraically closed field.

Exercise 1.

Let X be a topological space and $Y \subseteq X$ a topological subspace. Show the following assertions:

- (1) $\dim(Y) \leq \dim(X)$.
- (2) If $(U_i)_{1 \leq i \leq n}$ is an open cover of X , then $\dim(X) = \sup_{1 \leq i \leq n} (\dim(U_i))$.
- (3) Find an example of $Y \subseteq X$ such that Y is open and dense in X and $\dim(Y) < \dim(X)$. (Hint: Consider a topological space consisting of two points, with only one of them being closed).
- (4) If X is irreducible, has finite dimension and Y is closed, then $\dim(Y) = \dim(X) \Leftrightarrow Y = X$.

Exercise 2.

Let V, W be algebraic varieties and $P \in V$. Show the following assertions:

- (1) $\dim(V) = 0 \Leftrightarrow V$ is finite. (Hint: reduce to the affine case via an open affine cover of V).
- (2) If V and W are affine, then $\dim(V \times W) = \dim(V) + \dim(W)$. (Hint: by Noether normalization, the transcendence degree of $k(V)$ is also the cardinality of a maximal subset of algebraically independent elements of $\Gamma(V)$).

Exercise 3. *

Let $Y = \{(t^3, t^4, t^5), t \in k\} \subseteq \mathbb{A}_k^3$. We denote by $ht(I)$ the height of an ideal I .

- (1) Show that Y is a subvariety of \mathbb{A}_k^3 and compute $I(Y)$.
- (2) Compute $r = ht(I(Y))$. Show that $I(Y)$ cannot be generated by r elements. (Hint: Show that $\dim_k(I(Y)/(x, y, z)I(Y)) \geq 3$).

Exercise 4.

We denote by $k(V)$ the field of fractions of an algebraic variety V . Let $n \geq 1$.

- (1) Compute $k(\mathbb{P}_k^n)$.
- (2) Let $V_1 = V(y^2 - x^3) \subseteq \mathbb{A}_k^2$. Show that $k(V_1) \simeq k(\mathbb{P}_k^1)$. Is V_1 isomorphic to \mathbb{P}_k^1 ?
- (3) Let $V_2 = V_P(x_1x_2 - x_3x_4) \subseteq \mathbb{P}_k^3$. Show that $k(V_2) \simeq k(\mathbb{P}_k^2)$. Is V_2 isomorphic to \mathbb{P}_k^2 ? (Hint: You may assume that any two curves in \mathbb{P}_k^2 intersect).

Exercise 5.

Let $X = \mathbb{P}_k^2 \setminus \{x\}$ the complement of a point $x \in \mathbb{P}_k^2$.

- (1) Compute $O(X)$ and $k(X)$.
- (2) Show that X is neither quasi-affine nor projective.